Understanding the penetration mechanism of enveloped viruses

One of the main areas of research of the group is the mechanism of viral entry. The principal focus has been on the study of herpes simplex virus type 1 entry through the contribution of its surface of glycoproteins and mainly glycoproteins H, L and B (gH/gL complex and gB). Through a set of biophysical studies and the use of peptides, the group has proposed that several surface glycoproteins of HSV can harbor sequences with membranotropic activity that assist each-other during the complex mechanism of membrane fusion that ultimately allow the infectious process of the enveloped virus to develop. The main results have shown that besides gB (the canonical fusion protein of HSV-1) gH is also mandatory for the entry mechanism. Those regions with such propensity can be analyzed and identified with a broad range of methodologies. The basic mechanisms employed by viruses to gain access into susceptible cells are similar throughout the different families of enveloped viruses. Larger viruses employ more complex mechanisms composed of multiple glycoproteins and several regions of each glycoprotein are needed to work in cooperation to merge two opposing lipidic bilayers.

Design of novel molecules that may be used as antivirals

 

Design of novel molecules that may be used as antibacterials

 

Drug delivery

 

Nanotechnology